CO2 fluxes of transitional bioenergy crops: effect of land conversion during the first year of cultivation

ثبت نشده
چکیده

The present study examined the effect of land conversion on carbon (C) fluxes using the eddy covariance technique at seven sites in southwestern Michigan (USA). Four sites had been managed as grasslands under the Conservation Reserve Program of the USDA. Three fields had previously been cultivated in a corn/soybean rotation with corn until 2008. The effects of land use change were studied during 2009 when six of the sites were converted to soybean cultivation, with the seventh site kept as a grassland. In winter, the corn fields were C neutral while the CRP lands were C sources, with average emissions of 15 g C m 2 month . In April 2009, while the corn fields continued to be a C source to the atmosphere, the CRPs switched to C sinks. In May, herbicide (Glyphosate) was applied to the vegetation before the planting of soybean. After tilling the killed-grass and planting soybean in mid June, all sites continued to be C sources until the end of June. In July, fields previously planted with corn became C sinks, accumulating 15–50 g C m 2 month . In contrast, converted CRP sites continued to be net sources of C despite strong growth of soybean. The conversion of CRP to soybean induced net C emissions with net ecosystem exchange (NEE) ranging from 155.7 ( 25) to 128.1 ( 27) g C m 2 yr . The annual NEE at the reference site was 81.6 ( 26.5) g C m 2 yr 1 while at the sites converted from corn/soybean rotation was remarkably different with two sites being sinks of 91 ( 26) and 56.0 ( 20.7) g C m 2 yr 1 whereas one site was a source of 31.0 ( 10.2) g C m 2 yr . This study shows how large C imbalances can be invoked in the first year by conversion of grasslands to biofuel crops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Consensus, uncertainties and challenges for perennial bioenergy crops and land use

Perennial bioenergy crops have significant potential to reduce greenhouse gas (GHG) emissions and contribute to climate change mitigation by substituting for fossil fuels; yet delivering significant GHG savings will require substantial land-use change, globally. Over the last decade, research has delivered improved understanding of the environmental benefits and risks of this transition to pere...

متن کامل

Interaction between isoprene and ozone fluxes in a poplar plantation and its impact on air quality at the European level

The emission of isoprene and other biogenic volatile organic compounds from vegetation plays an important role in tropospheric ozone (O3) formation. The potentially large expansion of isoprene emitting species (e.g., poplars) for bioenergy production might, therefore, impact tropospheric O3 formation. Using the eddy covariance technique we have simultaneously measured fluxes isoprene, O3 and of...

متن کامل

Evaluating ecosystem processes in willow short rotation coppice bioenergy plantations

Despite a growing body of research linking bioenergy cultivation to changing patterns of biodiversity, there has been remarkably little interest in how bioenergy plantations affect key ecosystem processes underpinning important ecosystem services. In this study, we compare how the processes of predation by ground arthropods and litter decomposition varied between Short Rotation Coppice (SRC) wi...

متن کامل

Modelling the effect of different agricultural practices on stream nitrogen load in central Germany

Background: Understanding the response of nitrogen fluxes to changes in land use and agricultural practices is crucial for improving the instream water quality prediction. In central Germany, the expansion of bioenergy crops during the last decade led to an increase in fertiliser application rates. The purpose of this study is to investigate the effect of agricultural management changes on the ...

متن کامل

Predicting the Impacts of Climate Change on the Potential Distribution of Major Native Non-Food Bioenergy Plants in China

Planting non-food bioenergy crops on marginal lands is an alternative bioenergy development solution in China. Native non-food bioenergy plants are also considered to be a wise choice to reduce the threat of invasive plants. In this study, the impacts of climate change (a consensus of IPCC scenarios A2a for 2080) on the potential distribution of nine non-food bioenergy plants native to China (v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011